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ABSTRACT

In today’s world of computer networking, Gigabit Ethernet is quickly becoming the norm

for connectivity in computer networks. The ease of access to information on these networks

leads to new information being made available daily. Rises in both malicious users and ma-

licious network traffic increase the need for intrusion detection systems to monitor network

traffic. However, intrusion detection systems capable of processing network traffic at the rate

necessary for Gigabit Ethernet are typically expensive. An alternative to purchasing one of

these systems is to use multiple, cheaper intrusion detection systems and run them in parallel.

This requires that traffic be distributed to these intrusion detection systems such that their

traffic monitoring activity is unaffected. For typical intrusion detection systems this means

that all traffic belonging to a single connection cannot be separated. This thesis presents the

design and implementation of a low-cost, connection aware, load balancing solution capable of

distributing traffic to two intrusion detection systems while ensuring that all traffic for a given

connection is not separated.
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CHAPTER 1. INTRODUCTION

In today’s world, Gigabit Ethernet is rapidly becoming the norm for network connectivity.

As Gigabit Ethernet increases the speed of network connectivity, the amount of information

available for access over the Internet also grows. This increase in data availability and the

ease with which new data may be made available via the Internet creates a definite need for

systems that secure this data. Recent breaches in computer and network security at high

profile corporations have brought increased attention to information security. One powerful

tool for preventing such network attacks is an intrusion detection system. At a high level,

intrusion detection systems are responsible for monitoring network traffic and raising alerts

upon identification of malicious traffic indicating a possible intrusion attempt. These systems

typically rely on a set of rules or search patterns to identify possible intrusion attempts. Since

the protection needs of the networked systems secured by intrusion detection systems are

constantly changing, new rules must be added to intrusion detection system rule sets as new

system vulnerabilities are identified. Network attack becomes more sophisticated as attackers

learn and develop new methods for exploiting vulnerable systems. These more complex attacks

drive the need for frequent additions to intrusion detection system rule sets. As rule sets grow,

the amount of time required to apply all of these rule checks to network traffic increases.

However, each new generation of network connectivity solutions allows traffic to flow faster.

Many intrusion detection systems simply cannot properly process network traffic at the speed

offered by Gigabit Ethernet networks. As a result, there exists a need for novel solutions to

alleviate the monitoring load on a single intrusion detection system.

This problem can be solved by replacing a single intrusion detection with multiple intru-

sion detection systems operating in parallel. This solution reveals another problem because
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network traffic must now be distributed between the multiple intrusion detection systems in

a way that still allows them to properly monitor the traffic. For intrusion detection systems

to properly identify possible intrusion attempts they typically need to monitor all traffic be-

tween two communicating systems. (For simplicity, the remainder of this thesis refers to this

two-way communication as a connection.) As a result, the system distributing traffic between

multiple intrusion detection systems must be connection aware to prevent dividing the traffic

for a single connection between multiple intrusion detection systems. Current solutions on the

market offering similar functionality cost as much as $20,000 [1] [2], and are thus prohibitively

expensive for many businesses. With this in mind, this thesis presents the design and im-

plementation of a low-cost, connection aware, load balancing solution capable of distributing

traffic to two intrusion detection systems while ensuring that all traffic for a given connection

is not separated.

The remainder of this thesis is organized as follows. Chapter 2 provides some background

information related to the design presented in this thesis. Chapter 3 presents the design and

implementation of this solution. Chapter 4 discusses testing and results. Chapter 5 identifies

future work related to this project, and Chapter 6 offers conclusions of this project.
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CHAPTER 2. BACKGROUND

This chapter provides background information related to this thesis. First, Section 2.1

describes some related work in the areas of Gigabit Ethernet network traffic processing and

load balancing. Then, Section 2.2 provides an introduction to the NetFPGA platform used to

implement the design presented in this thesis.

2.1 Related Work

This section discusses related solutions in the area of intrusion detection systems in high

speed networks and intelligent traffic distribution and monitoring systems. Research into

related market solutions revealed three vendors that offer products providing similar function-

ality to the design in this thesis. First, IP Fabrics’ DeepSweep is discussed in Section 2.1.1.

Then, Section 2.1.2 briefly examines Top Layer Security’s DCFD 3500. Finally, CoyotePoint’s

Equalizer line of products is discussed in Section 2.1.3.

2.1.1 IP Fabrics’ DeepSweep-1

IP Fabrics’ DeepSweep-1 is a well-featured network surveillance solution designed for law

enforcement surveillance applications. This product operates on 1 Gigabit Ethernet (1000-

baseT connections), and supports many protocols running on IP. It operates as a standalone

network connected system, and includes a web interface for controlling surveillance tasks [3].

Overall, this product differs from the design presented in this thesis in that it offers far more

functionality than is necessary for the application of this thesis. Its surveillance capabilities

also create potential wiretapping issues for non-law enforcement applications. Additionally,

all functionality is implemented on the device itself rather than distributing functionality to
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backend systems. As a result, this product does not qualify as a relevant solution to the

problem addressed by this thesis.

2.1.2 Top Layer Security’s DCFD 3500

Top Layer Security markets its DCFD 3500 as a data collection and filtering device intended

for law enforcement surveillance applications. The device operates non-intrusively on Gigabit

Ethernet (1000 base-T) connections extracting traffic based on identifying information found

in layers up to layer 7. As with the IP Fabrics solution, a web administration interface is

provided for configuring the device [4].

This solution does not address the problem identified by this thesis for a few reasons. First,

its surveillance and collection nature raises similar wiretapping issues to the IP Fabrics solu-

tion. As with that solution, this product offers more functionality than the simple connection

aware, load-balancer needed to address the problem. Current pricing information for this prod-

uct available online is generally unreliable, but [1] and [2] suggest prices of at least $20,000,

approximately 8 times the cost of the solution presented in this thesis.

2.1.3 Coyote Point’s Equalizer Series

Coyote Point’s Equalizer series offers four load balancing solutions that provide similar

functionality to the design in this thesis. The Equalizer product line is comprised of the

E250GX, E350GX, E450GX, and E650GX. All four products offer load balancing at layers 4

and above, and offer support for more protocols than the TCP/IP configuration supported

by the design in this thesis. They also all offer a web interface for configuring and managing

the device. The E250GX supports 2 Gigabit Ethernet connections, while the E350GX and

E450GX each support 12, and the E650GX supports 20 1000 base-T connections and 2 fiber

based GigE SFP ports. The E450GX and E650GX are the only solutions of those examined

for this thesis that indicate hardware acceleration of some system functionality [5].

Although these solutions offer functionality closer to that of the design in this thesis, they

still do not adequately address the problem. The E250GX is marketed as a low-cost solution,
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and is listed at a price of $1,995 [5], but its throughput (650 Mbps) does not meet Gigabit

per second line rates. The E350GX’s throughput (850 Mbps) is also lower than 1 Gigabit per

second, and is thus not a reasonable solution. The other products in this line are certain to be

higher priced than this solution, so they do not qualify as low-cost solutions. Also, since these

are load balancing solutions, they likely modify network traffic changing destination addressing

information. These modifications will prohibit proper functioning of the intrusion detection

systems to which the solution needs to deliver traffic.

2.2 NetFPGA

This section discusses relevant details of NetFPGA, the platform used to implement the

solution presented in this thesis. First, Section 2.2.1 provides a brief introduction to the

NetFPGA platform. Section 2.2.2 explains the specific NetFPGA system used for the imple-

mentation. Finally, Section 2.2.3 explains the NetFPGA Reference Pipeline extended for the

implementation in this thesis.

2.2.1 NetFPGA Overview

The design presented in this thesis was implemented using a NetFPGA card. NetFPGA

is a PCI card with four Gigabit Ethernet ports, an FPGA, and three types of memory that

allows for implementing network systems such as switches, routers, or simple network interface

cards. The implementation presented in this thesis uses a NetFPGA Version 2.1 PCI card.

This card contains a Xilinx Virtex-II Pro 50 FPGA, and has 4.5 MB of SRAM and 64 MB

of DDR2 DRAM available on the PCI card [6]. Figure 2.1 on page 6 found in [7] provides a

graphical representation of how a NetFPGA card is structured. The implementation of the

design presented in this thesis required only the configuration of the FPGA for interaction

with the Gigabit Ethernet MACs and associated FIFOs, so a discussion of the memory system

present on the NetFPGA is not necessary.

Overall, the cost of a deploying a NetFPGA system functionally equivalent to the one

used for this thesis fits well within the category of low-cost solutions. The NetFPGA card is
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Figure 2.1 System block diagram of the NetFPGA platform

available for $1,199 ($499 for academia) according to [8], so it fits into the category of low-cost

solutions. Accent Technology produces two types of pre-built systems with NetFPGA cards:

the workstation class NetFPGA Cube and a rack-mountable NetFPGA 1U design. These

systems are available in dual-core and quad-core designs with the quad-core NetFPGA 1U

listed as the most expensive system at $1,849 [9]. This is the academic pricing, so the price is

likely at least $2,549 to cover the additional cost of the NetFPGA for industry applications.

2.2.2 Development System

Development and testing of this design was performed on a quad-core NetFPGA Cube

system as distributed by Accent Technology Inc. NetFPGA Package 1.2 was used for the

NetFPGA development environment. This environment includes an integrated Makefile en-

vironment that is capable of many development tasks ranging from running simulations to

generating a bitfile to configure the hardware. The build environment used by these Makefiles
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relies on the Xilinx ISE 9.2i design tool suite. All of the hardware modules of this design are

written in the Verilog hardware description language, and simulation test cases are written in

Perl.

2.2.3 NetFPGA Reference Design

The design presented in this thesis is implemented as an extension of the NetFPGA Ref-

erence Pipeline described in [10]. The datapath for packet traffic is shown in Figure 2.2 taken

from [10]. In this design, the Input Arbiter module determines the order in which to process

packets from each of the different input ports, reads packets from the eight input queues (4

Ethernet MAC inputs, 4 CPU direct memory access (DMA) ports), and outputs a stream

of packets to the Output Port Lookup module. The Output Port Lookup module processes

the packet determining the output Ethernet MAC ports on which the packet should be sent,

and passes this information along with the packet to the Output Queues module. The Output

Queues module accesses the output port information to determine the Ethernet ports on which

to output the packet, and adds the packet to the queues for these ports.

Figure 2.2 NetFPGA reference pipeline
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Table 2.1 shows the internal datapath interface between modules from the perspective of the

receiving module. Packet data and control information are sent via the in data and in ctrl

buses respectively when the in wr signal is asserted. It is the responsibility of the sending

module to send only when the in rdy signal is asserted, and new data and control information

are sent during each cycle that it is asserted.

Table 2.1 NetFPGA Reference Design datapath signals

Signal Name Direction Description

in data

[DATA WIDTH:0]

Input Input Data: Used by writing module to pass the

64-bit headers and data packets

in ctrl

[CTRL WIDTH:0]

Input Input Control: Used by writing module to provide

control information about the value on the in data

bus

in wr Input Input Write: Used by writing module to indicate

that the data on the in data and in ctrl buses is

valid

in rdy Output Input Ready: Used by reading module to indicate

that it is ready to receive new data

At this time, a discussion of how packet data is handled internally in the Reference Pipeline

is necessary. In the reference pipeline, and thus this thesis’ design, each Ethernet packet is

split into 64-bit packets and transported throughout the system on the in data bus. These

packets are processed by each subsequent module in the datapath before being output as a

full Ethernet packet at the Ethernet MAC output ports. In addition to dividing the output

into 64-bit packets internally, the datapath also supports using internal headers created by

different datapath modules. These headers are identified by non-zero values on the in ctrl

control bus. The Input Arbiter appends the first header with an associated value of 0xff on

the in ctrl bus. This header specifies the source port of this packet, the size in bytes and

words of the Ethernet packet, and provides a field to later specify the output ports for this

packet. Subsequent headers are added to the packet between this header and the actual data

packets which are identified by a value of 0x00 on the in ctrl bus. The control value for the

last internal packet of the Ethernet packet is set to the location of the last valid byte in the

internal packet.
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CHAPTER 3. DESIGN & IMPLEMENTATION

This chapter presents the details of the design and implementation of the solution developed

for this thesis. Section 3.1 explains the overall architecture of the design, and how it solves

the problem of distributing network traffic with stream-awareness. Subsequently, Section 3.2

provides details of the implementation of this design.

3.1 Design

This section explains the design architecture used to distribute network traffic between two

monitoring systems in this solution. At a high level, this solution acts as a duplicating Ethernet

tap. It is designed to be located at the boundary between a secured internal network, and an

unsecured external network - typically the Internet. Packets traveling between the networks

are examined to determine the monitoring system to which they will be forwarded. This design

uses a lookup table to determine the monitoring system output for each packet. Each time

a packet enters the system, its TCP connection is identified based on IP address and TCP

port. The active connection table is then queried to determine if the connection is already

associated with one of the two monitoring systems. If the connection is found in the table,

the packet is forwarded to the corresponding monitoring system’s output. If this connection

is not found, it is added to the table. New connections are assigned to the monitoring system

to which a connection was least recently assigned. Connections remain in the table until the

communication on this connection is complete. For the purposes of this design, this occurs

when the design encounters a packet with the TCP FIN control flag set.
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3.2 Implementation

This section details the implementation of the design described in Section 3.1. First,

Section 3.2.1 offers an overview of the implementation and some considerations and their effect

on the final solution. Section 3.2.2 describes the components of this system in detail. Finally,

Section 3.2.3 discusses some simple future implementation steps.

3.2.1 Overview

This section provides an overview of how the design presented in Section 3.1 was im-

plemented using the NetFPGA platform. The implementation presented here is created by

replacing the Output Port Lookup module from the NetFPGA Reference Pipeline with a mod-

ule that performs the expected stream-aware traffic distribution. The remainder of this section

discusses some implementation challenges, their solutions, and their effect on the overall design.

The first implementation challenge was determining exactly what constitutes a connection

for the purposes of distributing traffic based on streams. Current intrusion detection systems

typically need to analyze all traffic for a given TCP connection. These TCP connections are

established between TCP ports on two systems starting with a TCP handshake and concluding

with a packet with the FIN flag set in the TCP header. Both systems in a TCP connection have

specific IP addresses and TCP ports on which the connection occurs. Thus, for the purposes

of this design a connection is defined to be all packets sent between two IP address-TCP port

pairs until a packet with the TCP FIN flag set is encountered. With this definition in mind,

there are 296 possible connections because each IP address is 32 bits and each TCP port is 16

bits. Maintaining a table with 96-bit wide addresses proved impossible using the NetFPGA

platform. (For details on why this is impossible please refer to the discussion of the Connection

CAM LUT module found in Section 3.2.2.3.) With a little knowledge of the environment in

which this traffic distribution system is likely to be placed, the number of bits needed to

identify a connection may be reduced. Intrusion detection systems are typically located at the

boundary of a local area network. In other words, traffic that the intrusion detection system

monitors is either sent from or destined to a system on the Internet. IP addresses on the
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public Internet are defined to be globally unique, and it is impossible to open two connections

on the same TCP port of a single system. As a result, the IP address-TCP port pair for the

connecting system on the Internet is sufficient to identify a connection. This means that only

the IP address and TCP port of the Internet side of a connection must be stored to uniquely

identify a connection for this design. As a result, this design uses the 48 bits of this IP address

and TCP port as a connection identification tag.

Another implementation issue to consider was how many active TCP connections to handle

simultaneously. In order to forward traffic by stream, the system must maintain a table of

connection identification tags and the monitoring system used for all active connections. The

design presented here is capable of handling 32 simultaneous connections. The FPGA used in

this design is large enough to implement a larger connection table, but timing requirements

prevented using larger tables. A more detailed discussion of this design compromise is included

in the details of the Connection CAM LUT module in Section 3.2.2.3.

The next implementation issue was creating the connection table. This implementation

actually uses two Content Addressable Memory (CAM) modules, each associated with one of

the connections to a monitoring system. The CAM associated with each monitoring system

stores connection identification tags for all active connections forwarded to that system. Con-

sequently, the connection identification tag for all incoming packets is looked up in both tables,

but written to only one when the system encounters a new connection.

Figure 3.1 on page 12 shows how to connect this implementation to a network. The design’s

intended placement is at the boundary of a local network such that all traffic from the Internet

passes through the design to the internal network. With this in mind, Port 1 is connected to

the external wide area network, and Port 2 is connected to the internal local area network.

Ports 3 and 4 are connected to the monitoring systems or intrusion detection systems.

3.2.2 Details

This section provides details of exactly what functionality is present in each component

of the implementation. Since this implementation only alters the Output Port Lookup of the
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Figure 3.1 Port connections to the NetFPGA

Reference Pipeline, only it and its sub-modules are discussed here. For more information on the

functionality of the Input Arbiter and Output Queues modules used as part of the NetFPGA

Reference Pipeline refer to [10]. This section is organized according to individual components of

the design. For each component, the details of its functionality are discussed, the input/output

interface is defined, and any finite state machines used to control the module are explained.

First, Section 3.2.2.1 describes the top level Output Port Lookup module. Section 3.2.2.2

explains the Header Parser module. Finally, Section 3.2.2.3 details the Connection CAM LUT

module.

3.2.2.1 Output Port Lookup Module

The Output Port Lookup module fills a supervisory role in the process of determining the

output ports for each packet. It also receives packets from the Input Arbiter and sends them

the packet onto the Output Queues module after processing completes. Figure 3.2 on page 13

shows the hierarchy of the components within this module. The Header Parser module parses

the Ethernet, IP, and TCP headers, and the Connection CAM LUT uses the parsed header

information to determine on which ports to output this packet. The two FIFOs in the design

allow for buffering packet data while the Connection CAM LUT module determines the output

ports.

Although this module is primarily a supervisory module, it also handles receiving and

sending packet data. As each packet enters this module, its in data and in ctrl values
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Figure 3.2 Sub-components of the Output Port Lookup module

are buffered in the input fifo until its output ports are determined. Once the Connection

CAM LUT module determines the output ports for this packet, the ports are written to the

dst port fifo. As soon as this FIFO indicates it is not empty, the NetFPGA header packet

is read from the input fifo, the output ports are read from the dst port fifo and added to

it, and finally it is output from the module. Subsequently, all data packets (the 64-bit internal

packets that represent the actual Ethernet packet) are output from this module.

Figure 3.3 on page 14 shows the system diagram for the Output Port Lookup module.

As stated before, this module is primarily responsible for configuring the connections between

its submodules. However, it also forwards all register requests onto the next module, and

is responsible for adding the specified output ports to the packet output. The finite state

machine control logic handles the process of modifying packets with output port information

before outputting them. Aside from these steps, all major packet processing functionality is

performed by the Header Parser and Connection CAM LUT modules.

Table 3.1 on page 15 describes the interface for the Output Port Lookup module. Signals

prefixed in and out support the input and output datapaths respectively. The data and
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Figure 3.3 System diagram of the Output Port Lookup module

ctrl buses provide the raw packet data and control information related to each packet. The

wr signals indicate when data is valid on the data and ctrl buses, and rdy signals communicate

that a receiver is ready to receive input. All signals prefixed reg comprise the register interface

with input and output postfixed in and out respectively. The design detailed in this thesis

does not provide any registers, so register signals are passed from input to output each clock

cycle.

Figure 3.4 on page 16 shows the finite state machine that controls the Output Port Lookup

module. The Reference Pipeline based learning cam switch design uses the same state ma-

chine, so only a brief discussion of it is necessary here. After a reset, the state machine starts

in the WAIT TILL DONE DECODE state and waits in this state until the output ports for the next

packet in the input fifo are determined. Since these ports are written to the dst ports fifo

the state machine waits until this FIFO indicates that it is no longer empty. The state ma-

chine then transitions to the WRITE HDR state in which the internal NetFPGA header for this
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Figure 3.4 Finite State Machine for the Output Port Lookup module

Ethernet packet is read from the input fifo. The destination ports are then added to this

header and it is written to the output as the state transitions to SKIP HDRS. This state simply

outputs all of the other internal headers for this Ethernet packet by setting the out wr wire to

1 and the in fifo rd en wire to 1 to cause reading and output of new data each clock cycle.

These headers are identified by non-zero values on the in fifo ctrl dout bus - the buffered

in ctrl signal. Once the first zero value on this bus is observed, the state transitions to the

WAIT EOP state where buffered packets are output until the last packet is encountered. This

packet is identified by another non-zero value on the in fifo ctrl dout bus. After outputting

the last packet of this Ethernet packet, the state returns to the WAIT TILL DONE DECODE state

and the process repeats.
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3.2.2.2 Header Parser Module

This module parses and returns the values of necessary fields from Ethernet, IP, and TCP

headers. At a high level, this module reads the first six 64-bit internal NetFPGA and stores

the value of each field to a register connected to the outputs. Once a header field is stored into

its register, it is not changed until it is overwritten by the data from the same field in the next

packet.

Figure 3.5 System diagram of the Header Parser module
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Figure 3.5 depicts the overall system diagram for the Header Parser module. This module

is effectively a set of registers with multiplexers controlling their next input value. The next

value for all registers is the previous value except when a reset occurs or when the header

field for the register is updated. Although some registers share input bits, these correspond

to the same bits in different input packets. As a result, registers that share input bits will

never register new data during the same packet. The finite state machine control logic for this

module controls all of the multiplexers and loads the registers when the correct header fields

are encountered in the packet stream.

Table 3.2 Interface description for the Header Parser module

Signal Name Direction Description

in data

[DATA WIDTH-1:0]

input Input Data: Input internal header and data

packets

in ctrl

[CTRL WIDTH-1:0]

input Input Control: Control information associ-

ated with each packet on the in data: bus

in wr input Input Write: Asserted when data in data:

and in ctrl: buses are valid

hp done output Header Parser Done: Asserted when Eth-

ernet, IP, and TCP header parsing is complete

src port

[INPUT QUEUES-1:0]

output Internal Source Port: The NetFPGA

source port from which this packet originated

ip src [31:0] output IP Source Address: Source address from

the IP header

ip dst [31:0] output IP Destination Address: Destination ad-

dress from the IP header

tcp src [15:0] output TCP Source Address: Source port from

the TCP header

tcp dst [15:0] output TCP Destination Address: Destination

port from the TCP header

tcp fin output TCP FIN: Asserted when the parsed packet

had the TCP FIN flag set

clk input Clock: Module clock

reset input Reset: Module reset

Table 3.2 shows the input and output signals for this module. The signals prefixed with in

are the datapath input signals. The hp done signal indicates when header parsing is complete,

and is raised to 1 when parsing of the Ethernet, IP, and TCP headers completes. The src port



www.manaraa.com

19

signal is a one-hot encoded representation of the source port from which this packet came. For

packets from the first Ethernet MAC port it has a binary value of ”00000001,” ”00000100” for

the second, ”00010000” for the third, and ”01000000” for the fourth. Output signals prefixed

by ip and tcp are fields in the IP and TCP headers. The clk and reset signals are the

system wide clock and reset signals. In this module, all Ethernet, IP, TCP header fields are

parsed in this module, but most are not output in order to minimize the amount of wiring

in this design. The source code is present to output all fields, but most of it is commented

out because this design only needs the IP addresses and ports parsed. Although only one

IP address-TCP port pair is used to identify a connection in this design, both source and

destination pairs are output by this module. This occurs because the Connection CAM LUT

module uses either the source or destination pair for the tag based on the input port from

which this packet originated.

Figure 3.6 Finite State Machine for the Header Parser module



www.manaraa.com

20

Figure 3.6 shows the finite state machine used to control this module. The READ WORD 1

state reads data from the in data bus when the in wr wire is set to 1. In this state, the

internal control packet is first read and the source port for this packet is decoded and stored

in a register connected to the src port output signal. After reading the internal control

packet, the first data packet is also read while in this state. Since each internal packet is 64

bits long in this design, the first data packet contains only the Ethernet destination field and

the upper half of the Ethernet source field. These values are stored to registers and remain

unchanged until they are overwritten again by the next packet. After storing these values the

state machine transitions to the READ WORD 2 state. In this state, the next packet is read when

the design receives a 1 on the in wr wire. This packet contains the next 64 bits of the headers,

so the lower half of the Ethernet source address and the Ethertype fields are stored to registers

as with the previous state. This packet also contains the first three fields of the IP header:

version, Internet header length, and the differentiated services. These values are also stored

to registers for possible output. As stated before, these values are not output by this module

but are still parsed. The READ WORD 3, READ WORD 4, READ WORD 5, and READ WORD 6 states

parse the remaining fields in the IP and TCP headers similar to the READ WORD 2 state. After

READ WORD 6 all of the headers are parsed, so the hp done signal is set to 1 to indicate successful

completion of the header parsing. At this point the state machine waits in the WAIT EOP state

until it receives a non-zero value on the in ctrl bus indicating the end of the Ethernet packet.

At this point, the state machine returns to the READ WORD 1 state and idles until the start of

the next packet.

3.2.2.3 Connection CAM LUT Module

This module manages the connection table and uses it to determine and return the des-

tination ports for each packet. Each time a lookup is requested every packet inbound on

port 1 is output on port 2, and every packet inbound on port 2 is output on port 1 to make

this design act as a tap on the Ethernet connection. In addition, this module uses either the

source IP address-TCP port pair (for packets input on wide area network facing port 1) or
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the destination IP address-TCP port pair (for packets coming from local area network facing

port 2). This module uses two Content Addressable Memory (CAM) modules to implement

the connection table. This design relies on these CAMs for determining to which monitoring

system a given stream should be output. The address-port pair is used as a tag to lookup in

the CAMs. If it is found in either CAM, the output port corresponding to the CAM in which

it was found is added to the output ports. If the connection is not found in either CAM it is

added to the CAM written to least recently, and the corresponding port is added to the output

ports. Connections are removed from the CAMs whenever the design encounters a TCP FIN

packet. With this configuration, it is impossible for a packet to be output on more than two

ports and at no time will a packet be output on both ports 1 and 2 or on both ports 3 and 4.

Figure 3.7 on page 22 shows the overall system diagram of the Connection CAM LUT

module. For this diagram, all multiplexers are controlled by the finite state machine control

logic unless another wire is directly connected as the select signal. There are two major

aspects of this system: the CAM management logic and the output port control logic. The

CAM management logic must configure the CAMs for reads to lookup an input connection and

for writes when a new connection is added to the CAM or a closed connection is removed. The

output port control logic determines the output port to use for each packet. All four Ethernet

MAC ports are possible for a generic input packet, so this logic must determine from where

the packet originated and on which monitoring port it should output. As a result, this logic

must also communicate with the finite state machine control to determine which monitoring

ports to use.

Table 3.3 on page 23 shows the input and output signals for the Connection CAM LUT

module. The IP and TCP source and destination signals should be clear from the signal naming

convention. The tcp fin signal is set to 1 by the Header Parser module whenever it encounters

a TCP packet with the FIN control set. The lookup req input is set to high when the IP and

TCP addresses are valid to begin a lookup. The decoded src signal is a one-hot encoded bus

indicating the input port from which a packet originated. The dst ports output is a one-hot

encoded bus indicating on which output port to send a packet and the dst ports rdy output
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Figure 3.7 System diagram of the Connection CAM LUT module
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Table 3.3 Interface description for the Connection CAM LUT module

Signal Name Direction Description

src port

[INPUT QUEUES-1:0]

output Internal Source Port: The NetFPGA

source port from which this packet originated

ip src [31:0] output IP Source Address: Source address from

the IP header

ip dst [31:0] output IP Destination Address: Destination ad-

dress from the IP header

tcp src [15:0] output TCP Source Address: Source port from

the TCP header

tcp dst [15:0] output TCP Destination Address: Destination

port from the TCP header

tcp fin output TCP FIN: Asserted when the packet being

processed had the TCP FIN flag set

lookup req input Lookup Request: Lookup process starts

when this signal is asserted

decoded src [i:0] input Decoded Internal Source Port: One-hot

encoded bus indicating the source of this

packet

dst ports

[OUTPUT QUEUES-1:0]

output Internal Destination Port: One-hot en-

coded bus indicating the destination of this

packet

dst ports rdy output Destination Port Ready: Asserted when

the dst ports bus is valid

clk input Clock: Module clock

reset input Reset: Module reset

is set to 1 when its output is valid. The clk and reset signals are the system clock and reset

signals.

Figure 3.8 on page 24 shows the finite state machine that controls the Connection CAM

LUT module. Upon a system reset, the state machine starts in the RESET state. While in this

state, each entry in both CAMs is overwritten with a value of 0 to indicate that this location

is empty. Once all of these writes are completed (as indicated by values of 0 on the busy and

write enable signals for both CAMs) the state machine transitions to the IDLE state. During

this state, the compare input for the CAM is set to the proper IP address-TCP port pair for

a CAM lookup. This lookup then occurs during the cycle that the state transitions to the

LOOKUP DONE state. As the state transitions to the LOOKUP DONE state, the input IP addresses,
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Figure 3.8 Finite State Machine for the Connection CAM LUT module

TCP ports, and the tcp fin signal are stored to registers for the remainder of this packet’s

processing. In the LOOKUP DONE state, the result of the CAM lookup is available, so the match

signals for each CAM are checked to determine if either CAM contained the queried connection.

If a match is found the design adds the port associated with the matching CAM to dst ports

and asserts the dst ports rdy signal. Also at this time, the design configures the matching

CAM for a write of 0 to the match location to remove the entry from the CAM if the TCP FIN

control for this packet was set. Regardless of whether the entry is removed from the CAM, the

state machine returns to the IDLE state whenever one of the CAM lookups matched. If neither
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CAM matches the connection lookup, there are two possible scenarios. First, if the looked up

packet has the TCP FIN control set, then this is the last packet in the connection and there

is no need to add an entry to the CAM for it. The output port to which a new stream was

least recently assigned is added to the dst ports bus, the dst ports rdy signal is asserted,

and the state transitions to IDLE. However, if the TCP FIN control is not set, the design needs

to add this connection to the CAM. At this point, a value of 0 is loaded onto the compare

input bus for the CAM to find an empty location in the CAM, and the state transitions to

the ADD ENTRY state. After entering the ADD ENTRY state, the design checks for a match in the

CAM for the monitoring port that was least recently assigned a new connection. A match

indicates an available entry in the CAM for this port (since the design looked for the empty

value 0 during the transition into this state). When it detects a match, the design configures

the CAM in question to write the IP address-TCP port tag for this new stream to the address

of the unused entry. In addition to configuring this write, the output port associated with the

CAM is added to dst ports and the dst ports rdy signal is asserted. If no available entries

are found in the CAM, the design asserts the dst ports rdy signal without adding either of the

monitoring ports to the set of output ports. Thus, this packet is only forwarded between the

internal and external networks. Regardless of whether the entry is added, the state machine

transitions to the IDLE state on the next clock cycle to continue processing packets.

At this point, it is possible to return to the implementation consideration regarding the

number of active connections to support as described in Section 3.2.1. At that time it was

noted that this design only supports 32 active connections. This occurs because the design

cannot handle more active streams than available entries in the CAMs. In the implementation

used for this thesis, each CAM has 16 entries, so a maximum of 32 active streams may be

monitored. Additional connections are effectively dropped for monitoring purposes, but are

still forwarded between the internal and external networks. The number of active connections

is limited by the fact that a CAM with more entries will not meet clock timing requirements

for the FPGA used in this design. However, this limit is platform dependent, therefore using

an FPGA newer than the Virtex-II Pro will likely allow for monitoring more active streams.
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3.2.3 Future Steps

Since this is a proof of concept design, some implementation compromises were made and

need to be discussed here. First, the Internet Header Length field of the IP header is ignored,

and the design assumes all packets have a 20 byte IP header. For a production design, this

value must be handled properly to ensure that the correct location for the TCP ports is

identified. Since this field rarely indicates a header length other than 20 bytes, a possible

alternative solution is to use only an IP address and a hard coded TCP port for the connection

identification tag when this field does not indicate a 20 byte IP header.

In addition to the IP header issue, this design currently assumes all traffic is comprised of

IP packets, but in practice this is not true. In the case of non-IP traffic the design needs only

to forward the traffic between ports 1 and 2. It is possible to use the tcp fin signal as a ”Do

Not Write” signal to prevent adding these packets to the connection tables.

Another issue relates to the possibility that the NetFPGA datapath is not 64 bits wide.

The NetFPGA code base defines the datapath width using a parameter for each module. As a

result it is possible for the data width to not be 64 bits. Some reference designs even process

a 32-bit wide datapath, so this thesis’ design needs to eventually handle different datapath

widths. Currently, the Output Port Lookup module is capable of handling other datapath

widths, but it needs to receive an output port for each packet from the Connection CAM

LUT. The Connection CAM LUT module relies on the Header Parser to provide these output

ports, but the Header Parser does not support datapath widths other than 64 bits. Thus the

implementation as is does not support other datapath widths. Given the current design, the

simplest solution is to configure the Header Parser module to provide default values for other

datapath widths that would indicate to the Connection CAM LUT to only forward the packets.
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CHAPTER 4. TESTING

This chapter explains the process of testing the implementation found in Section 3.2. It

starts with a discussion of how NetFPGA designs are typically simulated in Section 4.1. Sec-

tion 4.2 describes details of the simulations performed on this design. Finally, Section 4.3

explains the status of hardware testing for this design.

4.1 NetFPGA Verification Test Environment

Before discussing simulation testing of the implementation described in Section 3.2 it is

necessary to explain the simulation infrastructure associated with the NetFPGA Package. All

NetFPGA documentation refers to this simulation testing as verification testing, so the same

convention is used here. At a high level, each verification test first generates a set of input

packets and a set of output packets. Then a simulation of the system with the specified input

packets is run. At the completion of the simulation, the actual output packets are compared to

the expected output packets. Any differences in individual packets, the number of packets on

each port, or the order of the output packets between the expected and actual packet output

causes a verification test to fail and output simple debugging information.

Table 4.1 on page 28 shows the output of a failed verification test. This failure was created

by switching the expected monitoring port output for a single packet. Notice that this change

caused the number of packets observed on each output port to differ the expected number as

indicated by the error messages for ports 3 and 4. The output for a passing test is shown in

Table 4.2 on page 29. This is effectively the same output as for a failed test with the exclusion

of the error indications.
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Table 4.1 Example output of failing NetFPGA verification test

--- Simulation is complete. Validating the output.

Comparing simulation output for port 1 ...

Port 1 matches [5 packets]

Comparing simulation output for port 2 ...

Port 2 matches [7 packets]

Comparing simulation output for port 3 ...

ERROR: Number of packets mismatch: expected 5 but saw 6

Port 3 saw 1 errors.

Comparing simulation output for port 4 ...

ERROR: Number of packets mismatch: expected 7 but saw 6

Port 4 saw 1 errors.

Comparing simulation output for DMA queue 1 ...

DMA queue 1 matches [0 packets]

Comparing simulation output for DMA queue 2 ...

DMA queue 2 matches [0 packets]

Comparing simulation output for DMA queue 3 ...

DMA queue 3 matches [0 packets]

Comparing simulation output for DMA queue 4 ...

DMA queue 4 matches [0 packets]

--- Test failed (test_thesis_short) - expected and seen data differs.

Error: test test_thesis_short failed!

------------SUMMARY---------------

PASSING TESTS:

FAILING TESTS:

test_thesis_short

TOTAL: 1 PASS: 0 FAIL: 1
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Table 4.2 Example output of passing NetFPGA verification test

--- Simulation is complete. Validating the output.

Comparing simulation output for port 1 ...

Port 1 matches [5 packets]

Comparing simulation output for port 2 ...

Port 2 matches [7 packets]

Comparing simulation output for port 3 ...

Port 3 matches [6 packets]

Comparing simulation output for port 4 ...

Port 4 matches [6 packets]

Comparing simulation output for DMA queue 1 ...

DMA queue 1 matches [0 packets]

Comparing simulation output for DMA queue 2 ...

DMA queue 2 matches [0 packets]

Comparing simulation output for DMA queue 3 ...

DMA queue 3 matches [0 packets]

Comparing simulation output for DMA queue 4 ...

DMA queue 4 matches [0 packets]

--- Test PASSED (test_thesis_short)

Test test_thesis_short passed!

------------SUMMARY---------------

PASSING TESTS:

test_thesis_short

FAILING TESTS:

TOTAL: 1 PASS: 1 FAIL: 0
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The NetFPGA verification test environment relies on a simple directory structure for test

configuration and three Perl scripts to test a design. The two files necessary to configure and

run a simulation using the NetFPGA verification test environment reside inside the verif/ di-

rectory within a NetFPGA project directory. Each verification test’s directory uses the naming

convention test majorName minorName. The config.txt file provides a short test description

and specifies how long the simulation will run. The second file is the make pkts.pl script

explained below. The first of the Perl scripts used for simulations is nf2 run test.pl. This

script runs a simulation test for the current project using the system’s simulator (ModelSim

6.3 SE for this thesis). The --major and --minor options specify which test(s) to run, where

--major and --minor are the same as the majorName and minorName portions of the name of

the verification test’s directory. The second script, nf2 compare.pl, compares the expected

and actual outputs after a simulation and indicates whether they match. The third script,

make pkts.pl is project specific and is responsible for specifying the packets to input to the

simulation and the expected output packets. In addition to these main files, many Perl library

files are included with the NetFPGA Package that allow for creating, sending, and expecting

Ethernet and IP packets.

4.2 Verification Testing

This section provides details of exactly what was done to simulate the implementation

for this thesis. Section 4.2.1 discusses the Perl library functions written to enable simulation

of TCP packets and TCP streams. Section 4.2.2 describes a short test that verifies basic

functionality of the design, and Section 4.2.4 describes a longer simulation that tests the

system more fully.

4.2.1 Perl Library Additions

This section explains Perl packages and functions written to allow simulating TCP packets

in the NetFPGA simulation environment. Each subsection describes either a package or a

function written to enable testing of TCP traffic via the NetFPGA simulation environment.
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The NetFPGA Package provides no support for creating a TCP packet, so this functionality

was added with one Perl package and two functions.

4.2.1.1 The TCP hdr Package

This package provides the ability to create a TCP header. It is modeled after the Ethernet

and IP header creation packages provided with the NetFPGA Package. A constructor provides

the ability to specify each field in the TCP header. The TCP headers created by this package

are simply an array of bytes, and the package contains all the functionality necessary to read

individual fields of the TCP header. Table 4.3 lists the functions available in this package and

briefly describes their functionality.

Table 4.3 Functions available in the TCP hdr() package

Function Name Description

new Constructor to create a new TCP hdr. All values default to 0.

SrcPort Get TCP source port

DstPort Get TCP destination port

SeqNum Get the Sequence Number

AckNum Get the ACK Number

DataOffset Get the value of the Data Offset field

ECN Get the value of the ECN field

Control Get the value of the Control field

Data Get the packet’s data

Window Get the value of the Window field.

Checksum Get the checksum

UrgentPointer Get the value of the Urgent Pointer field

IP hdr Get the IP hdr structure associated with this TCP hdr

length in bytes Get the header length in bytes (always returns 20)

calc checksum Calculate and set the checksum

4.2.1.2 The make TCP pkt() Function

This function belongs to the SimTCP package and creates a TCP packet that may be sent

to the NetFPGA. This function creates the packet by first generating the Ethernet and IP

headers using library packages provided with the NetFPGA Package. The TCP hdr package

previously described in this thesis generates the TCP header. These headers are concatenated
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Table 4.4 Example make TCP pkt() function call

make_TCP_pkt(length, ETH_DA, ETH_SA, TTL, IP_DST, IP_SRC, TCP_DST,

TCP_SRC, TCP_CTRL)

as a string of bytes and the remainder of the packet, up to the specified packet size, is filled

with the hex value of each byte’s position in the packet.

The make TCP pkt() function is called with the arguments shown in Table 4.4. Table 4.5

explains each argument. All arguments are required and the length parameter specifies the

length of the packet including the Ethernet, IP, and TCP headers. As a result, a warning is

displayed in the shell, and a packet with a length of 54 bytes (the minimum length of the 3

headers) is returned if a length shorter than 54 is provided. The TCP CTRL parameter is placed

directly into the TCP Control section of the header providing direct access to SYN, ACK, FIN,

and other flags.

Table 4.5 Arguments for the make TCP pkt() function

Argument Name Description

length Length of packet to create

ETH DST Ethernet Destination MAC Address

ETH SRC Ethernet Source MAC Address

TTL TTL value for this packet

IP DST IP Destination Address

SRC IP IP Source Address

TCP DST TCP Destination Port

TCP SRC TCP Source Port

TCP SEQ NUM TCP Sequence Number of this packet

TCP CTRL TCP Control value for this packet. Note that the following bit lo-

cations are the reverse of what is typically documented for TCP

headers. Bit 0 is FIN, bit 1 is SYN, bit 2 is RST, bit 3 is PSH, bit

4 is ACK, and bit 5 is URG. For example, a value of 0x01 sets the

FIN flag and a value of 0x13 set FIN, SYN, and URG.
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Table 4.6 Example make TCP stream() function call

make_TCP_stream(stream_length, pkt_length, ETH_DST, ETH_SRC,

TTL, IP_DST, SRC_IP, TCP_DST, TCP_SRC)

4.2.1.3 The make TCP stream() Function

This function creates a unidirectional stream of TCP packets, and is also part of the SimTCP

package. Before discussing the details of this function, it is important to note that this function

does not create a true TCP stream as the initial three-way TCP handshake is not performed

since traffic flows in only one direction. However, the stream is ended by a packet with the

TCP FIN flag set.

The make TCP stream() function is called with the arguments shown in Table 4.6. Table 4.7

explains each argument. Every argument is required, and a stream of two packets is returned

if the stream length argument is less than 2.

Table 4.7 Arguments for the make TCP stream() function

Argument Name Description

stream length Length of stream to create

pkt length Length of all packets in the stream

ETH DST Ethernet Destination MAC Address for all packets in the stream in

the output stream

ETH SRC Ethernet Source MAC Address for all packets in the stream in the

output stream

TTL TTL value for all packets in the stream in the output stream

IP DST IP Destination Address for all packets in the output stream

SRC IP IP Source Address for all packets in the output stream

TCP DST TCP Destination Port for all packets in the output stream

TCP SRC TCP Source Port for all packets in the output stream

4.2.1.4 The make TCP duplex stream() Function

This function creates a bi-directional TCP packet stream. Unlike the make TCP stream()

function, this function uses standard TCP 3-way handshake to begin a connection. The first

three packets perform the 3-way handshake with the first packet source IP address and TCP
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Table 4.8 Example make TCP duplex stream() function call

make_TCP_duplex_stream(stream_length, pkt_length, ETH_DST, ETH_SRC,

TTL, IP_DST, SRC_IP, TCP_DST, TCP_SRC)

port to the destination IP address and TCP port. The last packet is also sent from the source

IP address-TCP port pair to the destination, but with the TCP FIN flag set. If a stream

length of more than four is specified, the intermediate packets are randomly sent either from

the source to destination used in the first and last packets or from the destination to the source

specified in these packets.

The make TCP duplex stream() function is called with the arguments shown in Table 4.8.

Table 4.9 details what each argument specifies. All arguments are required, and the stream

length is set to 2 if a length less than 2 is provided.

Table 4.9 Arguments for the make TCP duplex stream() function

Argument Name Description

stream length Length of stream to create

pkt length Length of all packets in the stream

ETH DST Ethernet Destination MAC Address for all packets in the stream in

the output stream

ETH SRC Ethernet Source MAC Address for all packets in the stream in the

output stream

TTL TTL value for all packets in the stream in the output stream

IP DST IP Destination Address for all packets in the output stream

SRC IP IP Source Address for all packets in the output stream

TCP DST TCP Destination Port for all packets in the output stream

TCP SRC TCP Source Port for all packets in the output stream

4.2.2 The test thesis short Verification Test

The test thesis short simulation is a simple test designed to confirm that basic func-

tionality of the design performs properly. Table 4.10 on page 35 demonstrates how to run this

test using the verification testing scheme explained in 4.1. All packets input to this verification

test are separated by 1 microsecond so the Input Arbiter will process them in order causing the
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Table 4.10 Commands to start the test thesis short verification test.

[user@host]# NF2_DESIGN_DIR=/path/to/project/

[user@host]# nf2_run_test.pl --major thesis --minor short

Table 4.11 Packets sent for the test thesis short simulation

(1) Send 2 packets in on ports 1 and 2

(2) Send same packets as in (1), in same order, switching the source and destination

(3) Send same packets as (1), with TCP FIN set, in on port 1

(4) Send 1 packet with TCP FIN set

(5) Send original 2 packets with TCP FIN set

(6) Send same packet as in (4)

(7) Send same packets as in (5) in reversed order

(8) Send packets in on MAC ports 3 and 4, and on CPU DMA ports

outputs to be in the expected order. This test first creates two streams by sending two unique

packets. Next, two packets are sent in the opposite direction (from destination to source of

the original packets). Then packets are sent in the original direction with the TCP FIN flag

set to close the connection. The two streams are reopened with expectation of being sent to

the opposite monitoring output port as before, but the TCP FIN flag is again set to prevent

adding the connections to the table. After this, the streams are again reopened with the TCP

FIN flag set with the expectation that they will be forwarded to the opposite ports as they

were the second time the connections were opened (since they should not have been added to

the connection table). Finally, packets are sent in on the monitoring ports and the CPU DMA

ports because the design must drop all packets input on these ports.

Table 4.11 explains the exact packet input procedure of this test. Unless specified otherwise,

all numbered ports refer to the Ethernet MAC ports of the device. For all packets input on

ports 1 and 2, the exact same packet is expected to be output on ports 2 and 1, respectively.

In step 1, both packets should be seen as new streams (referred to here as ”stream1” and

”stream2” for simplicity), and thus output to ports 3 and 4, respectively. In step 2, stream1

should still be output to port 3, and likewise stream2 to port 4. In step 3, both streams

should still be output on the same ports, but setting the TCP FIN should indicate the end of a
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connection and cause the removal of the connections from the connection tables. Step 4 sends

a single packet with the TCP FIN set (so the connection is not added to the table) that is

seen as a new connection, output on port 3, and causes the next new connection to be output

on port 4. Step 5 resends the two streams with TCP FIN set so they will not be added to the

connection table. Since the packet sent in step 4 caused the next new connection to output on

port 4, and the streams were closed in step 3, stream1 and stream2 are now new connections

and thus should output to ports 4 and 3 respectively. Step 6 performs the exact same function

as step 4 in switching the output port for the next new connection to port 3. Step 7 is the

same as step 5, and since the TCP FIN flag was set on the packets in step 5, both stream1 and

stream2 should again be seen as new connections, and thus output on output ports 3 and 4

respectively. Finally in step 8, input packets are sent on the monitoring ports 3 and 4 and on

all four of the CPU DMA ports with the expectation that all of these packets will be dropped

(not output on any port).

4.2.3 Simulation Waveforms for test thesis short

This section contains simulation waveforms taken from the test thesis short verificaton

test. Each waveform shows the major functionality of a module and an associated explanation

of the waveform draws attention to the major points of interest in the waveform.

Figure 4.1 on page 37 shows the processing of a single packet from the view of the Output

Port Lookup module. Near the top left of the waveform, the packet is input on the in buses

and passed directly to the Header Parser module. This module takes 7 cycles to process the

64-bit packets needed to parse the Ethernet, IP, and TCP headers. Once parsing is complete,

the module raises its hp done output signal asserting the lookup req input for the Connection

CAM LUT. After 3 more cycles, the Connection CAM LUT module completes its processing,

sets dst ports to the proper value, and asserts the dst ports rdy signal. This triggers the

Output Port Lookup module to read the input packet from the FIFO, update the internal

header with the correct output ports, and begin outputting it during the next 2 cycles. Overall,

this design requires 12 cycles of the 125 MHz clock to process a packet from a new connection.
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A packet from an existing packet requires only 11 cycles of processing because it does not need

to be written to the connection table. Although removing entries from the table requires a 2

cycle write, packet processing is only delayed for packets less than 56 bytes in length. Packets

this short are completely buffered by the time the Header Parser completes processing, and

thus the next packet enters immediately and will later encounter a single cycle delay if the

packet before it was removed from the connection table. These processing cycle counts are

constant, regardless of packet length. As a result, performance will be better with longer

packets because there is a higher packet data to header ratio, and thus less processing per

packet.

Figure 4.2 on page 39 depicts the Header Parser module’s processing of a single packet.

The in signals shown at the top of the figure show a packet being input to this module in

the 64-bit internal NetFPGA format. As the packet is input, the IP and TCP header fields

for source and destination are output as the input packet is processed. Once all Ethernet, IP,

and TCP fields are processed, the hp done signal is asserted during the next to the last cycle

shown in the figure.

Figure 4.3 on page 40 details the Connection CAM LUT module handling a packet input

on port 1 without the TCP FIN flag set. During the first cycle shown, lookup request is

asserted, so the module begins processing the input IP and TCP ports. Also, latch inputs

is asserted to store the values of the inputs in case the connection later needs added to the

connection table. Since this packet came in on port 1 (external network to internal network

traffic), the IP source address and TCP source port comprise the connection identification

tag. During the first cycle, lookup request is asserted and both CAMs are queried for this

tag. In the second cycle, neither CAM indicates a match, so the system configures a write to

port 3’s CAM during the third cycle. The design knew to use this CAM because a 0 on the

cam toggler wire indicated that a new connection was least recently assigned to this CAM.

The value of this signal is toggled during cycle 4 to specify that the next new connection should

use port 4’s CAM. The connection tag is written to the CAM during the fourth cycle, and the

CAM indicates that it is busy for the fifth cycle. During the seventh cycle, the cam3 match
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signal is asserted while the connection tag is still on the compare input bus, so the value was

successfully written to the CAM.

Figure 4.4 on page 42 depicts the Connection CAM LUT module processing a packet input

on port 2. Since this packet is traveling from the internal network to the external network the

IP address-TCP port pair used for the connection identification tag must be switched. The

swap src dst wire is asserted to indicate this switch, and the latched inputs bus stores the

destination IP address and TCP port. Since this packet is a new connection and immediately

follows the packet shown in Figure 4.3, it is added to the CAM for and output on port 4. The

cam select wire is set to 1 when dst ports rdy is asserted indicating that port 4 is added to

dst ports. At this point, adding the entry to the CAM proceeds as it did in Figure 4.3 but

uses port 4’s CAM rather than port 3’s CAM.

Figure 4.5 on page 43 details the Connection CAM LUT processing a packet input on port

3. Throughout the processing of this packet, the unscanned src wire is asserted indicating

that this packet came from an unmonitored port (any port besides MAC ports 1 and 2). As

a result, neither CAM is configured for a write during cycle 4 as was the case for packets

input on ports 1 and 2. The cam toggler and cam select signals are unaltered, and no ports

are indicated for output by dst ports since it is set to ”00000000” when dst ports rdy is

asserted.

Figure 4.6 on page 44 shows the Connection CAM LUT module handling a packet input

on port 1 with TCP FIN set. Processing starts similar to the previous two examples as the

connection identification tag is looked up in both CAMs during the first cycle. During the

second cycle, cam3 match is asserted indicating that the connection is assigned to port 3. As a

result, port 3 is added to dst ports and dst ports rdy is asserted during cycle 3. However,

during cycle 2, the tcp fin latched signal is asserted indicating that this packet had TCP FIN

set. Accordingly, the CAM is configured for a write of 0 to the address where this connection

identification was found during cycle 3. The CAM asserts the cam3 busy signal during cycle

4 to indicate that it is processing the write. Notice that the connection identification tag no

longer matches after the write completes.
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Table 4.12 Commands to start the test thesis long verification test.

[user@host]# NF2_DESIGN_DIR=/path/to/project/

[user@host]# nf2_run_test.pl --major thesis --minor long

4.2.4 The test thesis long Verification Test

The test thesis long simulation attempts to test all functionality of the design for this

thesis. Using the conventions and environment described in section 4.1, this verification test

is started using the commands shown in Table 4.12. Packets for this test are again input

in 1 microsecond increments so the Input Arbiter will process them in order to preserve the

expected output packet order. At a high level, the test first sends four bi-directional TCP

streams including a TCP FIN packet to close the connection at the end of the stream. Then

all four connections are reopened using the last packet of the stream (with the TCP FIN flag

set, so they will not be added to the connection table). The simulation is then configured

to reopen these connections such that they will each be output on the opposite monitoring

port as before. These same four last packets are repeated again to confirm that the packets

with TCP FIN set were not added to the connection table. Next, 33 unique packets are sent,

creating 33 unique connections. This will overflow the connection table by one packet, and this

packet is expected to be dropped. The first 32 of these packets are resent expecting that the

connections were added to the table, and thus all packets will output on the same monitoring

port as before. Finally, packets are input on the monitoring MAC ports and the four CPU

DMA ports with all six packets expected to be dropped.

Table 4.13 on page 46 shows the exact procedure for this test. In step 1, the four bi-

directional TCP streams are created. Each stream is between 2 and 10 packets in length, and

each packet is 64 bytes long. All but the last packet of each stream are sent in step 2, and the

last packet of each stream is sent in step 3. In step 4, since the number of connections is even,

the test sends a single packet as an offset to force the next new connection to use the opposite

monitoring port of when the simulation began. In step 5, all four connections are reopened in

the same order with the last packet of the original stream (thus the TCP FIN flag is set to
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Table 4.13 Packets sent for the test thesis long simulation

(1) Create 4 bi-directional TCP streams of 64 byte packets

(2) Send all but the last packet of each stream

(3) Send the last packet of each stream

(4) Send 1 packet if number of streams is even

(5) Resend the last packet of each stream

(6) Send 1 packet if number of streams is even

(7) Resend the last packet of each stream

(8) Send 33 unique packets

(9) Send first 32 packets of (8)

(10) Send packets in on MAC ports 3 and 4, and on CPU DMA ports

avoid adding the connections to the table). As a result of the offset packet, each packet should

output on the opposite monitoring port as before. This indicates that the design successfully

removed the connections from the table when it encountered the TCP FIN packet. Steps 6

and 7 perform the exact function as steps 4 and 5 to ensure that the connections created in

step 5 were not added to the connection table when the first packet received had the TCP FIN

flag set. Thus, each packet should output on the opposite port as it did in step 5. Step 8 sends

33 packets, or one more than the connection table can store, and the last packet is expected

to be dropped. Step 9 resends the first 32 packets of step 8 expecting output for each packet

on the same port to ensure that all entries in the connection table are accessible and function

properly. Step 10 sends packets in on all ports that are not forwarded, and thus expects the

design to drop all packets sent in this step.

4.3 Hardware Testing

The implementation of this design is not tested in the actual NetFPGA hardware. Using

the NetFPGA Makefile environment for the project, a bitfile was successfully generated and

downloaded to hardware. However, this hardware implementation is untested because proper

testing requires sending and receiving network traffic on 4 physical Ethernet ports connected to

the NetFPGA. Although hardware testing was not performed, successfully generating a bitfile

means that device utilization information is available. Table 4.14 on page 47 shows the Device
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Table 4.14 Summarized results of Place and Route for the design

Device Utilization Summary:

Number of BUFGMUXs 8 out of 16 50%

Number of LOCed BUFGMUXs 8 out of 8 100%

Number of DCMs 6 out of 8 75%

Number of External IOBs 356 out of 692 51%

Number of LOCed IOBs 356 out of 356 100%

Number of RAMB16s 112 out of 232 48%

Number of SLICEs 12997 out of 23616 55%

Utilization Summary provided by the Xilinx ISE 9.2i Place and Route tool. These results

indicate that the design uses less than half of the memory (RAMB16s) and just over half of

the logic resources (SLICEs) available on-chip. In addition, timing analysis (not shown here)

reveals that for a clock period requirement of 8 ns, the best case clock period for the design is

7.963 ns.
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CHAPTER 5. FUTURE WORK

This chapter discusses future work related to this project. It is not intended to be all-

inclusive. Instead it identifies directions for future work, and possible projects in these direc-

tions. Included in this chapter are discussions of future work in testing the design, extending

it, and expanding upon it.

Although a bitfile was successfully generated for this project, the design’s performance in

hardware is untested. Thus, possible future work is to design and implement a hardware test

bench for this design. The NetFPGA Cube used for this design has four physical Ethernet

ports in addition to those on the NetFPGA, so this system could possibly be used to test

the hardware design. Regardless of the system chosen, a hardware test bench will allow for

verifying the hardware implementation and may offer some performance benchmarking.

One possible extension to this work is to create a similar solution that is not only stream-

aware, but also stream type aware. For example, all web traffic could be forwarded to a

certain monitoring system. This allows more specialized monitoring systems to process larger

rule sets for specific connection types. Since the monitoring system would only be responsible

for specific traffic types, rules for other traffic types could be excluded in favor of more specific

rules for these types.

Another extension is to parallelize the processing and distribution of incoming traffic. The

current solution processes traffic inbound and outbound on two different ports with the same

logic. With duplicate processing logic, the design could process traffic inbound on ports 1 and

2 in parallel. Implementing this extension would require duplicating the Output Port Lookup

logic, and replacing the input arbiter from the design presented in this thesis with a module

that retrieves incoming packets from multiple ports simultaneously.



www.manaraa.com

49

A third direction for future work is to develop an algorithm to reduce the number of bits

used to store a connection identification tag. The current design uses the concatenation of

the 32-bit IP address and 16-bit TCP port from the wide area network side of the system to

form a 48-bit connection identification tag. Using such a large tag in the connection lookup

table reduces the number of active connections supported by this design. It is worth noting

at this point that conflicts in connection identification tags are not a major issue because all

packets of a given stream will still be forwarded to the same monitoring system. The issue

with conflicts is that they disproportionately increase the workload on the monitoring system

whose table encountered the conflict. In other words, the conflicting connection identification

entry in the table now represents two connections rather than one. This is only a major issue

when many conflicts occur, so selection of a reduction algorithm should consider the types of

conflicts that may be encountered.

Another direction for future work is to expand the design to share the intrusion detection

load between itself and the backend intrusion detection systems to create a hierarchical de-

tection system. One possible example is to process a set of simple intrusion detection rules

in hardware and only forward suspicious connections to the backend, software based intrusion

detection systems. Another possibility is to implement basic intrusion prevention system func-

tionality in hardware and to forward traffic to backend intrusion detection systems for more

in-depth processing. (Intrusion prevention systems may be thought of intrusion detection

systems that take action to prevent intrusions.)

Beyond design modifications, research into the number of active connections to maintain

in the connection table would prove beneficial. Currently the design supports 32 active con-

nections as a proof of concept, and all connections beyond this number are unmonitored. Due

to space and timing limitations of most FPGAs, the size of this table will likely be limited

regardless of the FPGA used. As a result, it is important to determine the typical size of the

set of active connections in small business networks in which this solution is most likely to be

deployed. Knowing the size of this set will allow minimization of the size of the connection

table.
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CHAPTER 6. CONCLUSION

This thesis presented a low-cost, connection aware, load balancing solution for distributing

network traffic to multiple intrusion detection systems. It included a discussion of some related

solutions, and a short introduction to the NetFPGA platform used to implement the design. It

presented the design architecture used for the solution, and the details of its implementation.

The testing performed on this design and the related support functionality added for testing

was discussed. Finally, it identified some possible directions for future work related to the

solution.

Overall, this project successfully accomplishes its goal of providing a low-cost, connection

aware, load balancing solution for distributing network traffic to multiple intrusion detection

systems. The design proved to be fully capable of addressing this problem. It provides a proof

of concept system that could be implemented on newer hardware to support monitoring more

active connections. Regardless of the hardware used, this design provides a solid foundation for

expansion to implementing more intelligent in network traffic distribution systems. In addition

to the solution itself, this project caused the development of valuable simulation and testing

components. The TCP hdr package provides the functionality for the NetFPGA simulation

libraries to support creating TCP packets. The make TCP pkt(), make TCP stream() and

make TCP duplex stream() Perl functions create packets to test designs with TCP traffic. The

combination of all of these additions to the Perl test environment provided by the NetFPGA

Package provides a foundation for expansion into creating and sending more complicated TCP

traffic patterns. Overall, this project proved successful, offering not only a working solution

to distribute traffic to multiple intrusion detection systems, but also a foundation for creating

more intelligent traffic distribution solutions.
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